

DESCRIPTION

The MF3009, MF301x, MF302x and MOC305x series of devices consist of a GaAs infrared emitting diode optically coupled to a light activated bilateral triac. They are designed for use with a discrete power triac in the control of resistive and inductive loads operating in 110 to 240 VAC lines.

FEATURES

- Non Zero Crossing (Random Phase)
- V_{DRM}
 - MF3009 250V
 - MF301x 250V
 - MF302x 400V
 - MF305x 600V
- Isolation Voltage 3750V_{RMS}
- Wide Operating Temperature Range -40°C to 110°C
- Pb Free and RoHS Compliant
- Safety Approvals Pending •

APPLICATIONS

- Solenoid / Valve Controls •
- Lamp Ballasts
- **Light Dimming Controls** •
- AC Motor Drivers
- **Temperature Controls** .
- AC Motor .
- Solid State Relays

ORDER INFORMATION

Available in Tape & Reel

ABSOLUTE MAXIMUM RATINGS

Input

Forward Current	60mA
Reverse Voltage	6V
Power dissipation	100mW

Output

Off-state Output Terminal Voltage MOC3009 250V MOC301x 250V MOC302x 400V MOC305x 600V **On-state Current** 70mA_{RMS} Peak Repetitive Surge Current 1A Power Dissipation 300mW

Total Package

Isolation Voltage Operating Temperature Storage Temperature Lead Soldering Temperature (10s) $3750V_{RMS}$ -40 to 110 °C -55 to 150 °C 260°C

ISOCOM COMPONENTS 2004 LTD

Unit 25B, Park View Road West, Park View Industrial Estate Hartlepool, Cleveland, TS25 1UD, United Kingdom Tel: +44 (0)1429 863 609 Fax : +44 (0)1429 863 581 e-mail: sales@isocom.co.uk http://www.isocom.com

ISOCOM COMPONENTS ASIA LTD

Hong Kong Office, Block A, 8/F, Wah Hing Industrial mansion, 36 Tai Yau Street, San Po Kong, Kowloon, Hong Kong. Tel: +852 2995 9217 Fax : +852 8161 6292 e-mail sales@isocom.com.hk

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)

INPUT

Parameter	Symbol	Test Condition	Min	Тур.	Max	Unit
Forward Voltage	$V_{\rm F}$	$I_F = 10 mA$		1.2	1.5	V
Reverse Leakage Current	I _R	$V_R = 6V$			10	μA

OUTPUT

Parameter	Symbol	Test Condition	Min	Тур.	Max	Unit
Peak Off-state Current	I _{DRM}	$V_{DRM} = Rated V_{DRM}$ $I_F = 0mA$			100	nA
		(Note 1)				
Peak Blocking Voltage	V _{DRM}	$I_{DRM} = 100nA$				V
		MF3009			250	
		MF3010 / MF3011 / MF3012			250	
		MF3020 / MF3021 MF3022 / MF3023			400	
		MF3051 / MF3052			600	
On-state Voltage	V _{TM}	$I_{TM} = 100 \text{mA} \text{ (peak)},$ $I_F = \text{Rated } I_{FT}$			2.5	V
Critical Rate of Rise of	dv/dt	$I_F = 0mA$				V/µs
Off-state Voltage		MF3009 MF3010 / MF3011 / MF3012 MF3020 / MF3021 MF3022 / MF3023		10		
		MF3051 / MF3052	1000			

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)

COUPLED

Parameter	Symbol	Test Condition	Min	Тур.	Мах	Unit
Input Trigger Current	I_{FT}	$V_{TM} = 3V$				mA
		MF3009 / MF3020			30	
		MF3010 / MF3021 / MF3051			15	
		MF3011 / MF3022 / MF3052			10	
		MF3012 / MF3023			5	
		(Note 2)				
Holding Current (either direction)	$I_{\rm H}$			3	5	mA
Input to Output Isolation Voltage	V _{ISO}	(note 3)	3750			V _{RMS}

Note 1 : Test Voltage must be applied within dv/dt rating.

ISOCOM

COMPONENTS

Note 2 : Guaranteed to trigger at an I_F value less than or equal to max I_{FT}, recommended I_F lies between Rated I_{FT} to Absolute Max I_F.

Note 3 : Measured with input leads shorted together and output leads shorted together.

Fig 1 Forward Current vs Forward Voltage

Fig 2 On-State Characteristics

Fig 4 Normalized LED Trigger Current vs **Ambient Temperature**

Voltage vs Ambient Temperature

ORDER INFORMATION

ISOCOM

COMPONENTS

		IS281	
After PN	PN	Description	Packing quantity
None	MF3009 MF3010, MF3011, MF3012 MF3020, MF3021, MF3022, MF3023 MF3051, MF3052,	Surface Mount Tape & Reel	3000 pcs per reel

DEVICE MARKING

MF3063 denotes Device Part Number where "MF3052" is used as example

I denotes Isocom

Y denotes 1 digit Year code

WW denotes 2 digit Week code

PACKAGE DIMENSIONS (mm)

RECOMMENDED PAD LAYOUT (mm)

IR REFLOW SOLDERING TEMPERATURE PROFILE (One Time Reflow Soldering is Recommended)

Profile Details	Conditions
Preheat - Min Temperature (T _{SMIN}) - Max Temperature (T _{SMAX}) - Time T _{SMIN} to T _{SMAX} (t _s)	150°C 200°C 60s – 120s
$\label{eq:soldering Zone} \begin{array}{l} \mbox{-} Peak Temperature (T_P) \\ \mbox{-} Liquidous Temperature (T_L) \\ \mbox{-} Time within 5^{\circ}C of Actual Peak Temperature (T_P - 5^{\circ}C) \\ \mbox{-} Time maintained above T_L (t_L) \\ \mbox{-} Ramp Up Rate (T_L to T_P) \\ \mbox{-} Ramp Down Rate (T_P to T_L) \end{array}$	260°C 217°C 30s 60s – 100s 3°C/s max 6°C/s max
Average Ramp Up Rate (T_{smax} to T_P)	3°C/s max
Time 25°C to Peak Temperature	8 minutes max

TAPE AND REEL PACKAGING (mm)

Direction of feed from reel

Dimension No.	Α	В	Do	D1	E	F
mm	4.4 ± 0.1	7.4 ± 0.1	1.5 + 0.1/-0	1.5 ± 0.1	1.7 5± 0.1	7.5 ± 0.1

Dimension No.	Ро	P1	P2	t	W	к
mm	4.0 ± 0.15	8.0 ± 0.1	2.0 ± 0.1	0.25 ± 0.03	16.0 ± 0.2	2.4 ± 0.1

NOTES :

- Isocom is continually improving the quality, reliability, function or design and Isocom reserves the right to make changes without further notices.
- The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical application and instrumentation.
- For equipment/application where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc., please contact our sales representatives.
- When requiring a device for any "specific" application, please contact our sales for advice.
- The contents described herein are subject to change without prior notice.
- Do not immerse device body in solder paste.

ISOCOM

COMPONENTS

DISCLAIMER

ISOCOM

COMPONENTS

ISOCOM is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing ISOCOM products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such ISOCOM products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that ISOCOM products are used within specified operating ranges as set forth in the most recent ISOCOM products specifications.

____ The ISOCOM products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These ISOCOM products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation Instruments, traffic signal instruments, combustion control instruments, medical Instruments, all types of safety devices, etc... Unintended Usage of ISOCOM products listed in this document shall be made at the customer's own risk.

____ Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.

____ The products described in this document are subject to the foreign exchange and foreign trade laws.

_____The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by ISOCOM Components for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of ISOCOM Components or others.

_ The information contained herein is subject to change without notice.